Abstract

IntroductionPatients who have sustained extensive burns frequently exhibit substantial damage to skeletal muscle and associated complications. The rehabilitation of these patients can be challenging due to the nature of the injury and the subsequent complications. Nevertheless, there is a possibility that functional proprioceptive stimulation (illusory movements) may facilitate effective rehabilitation in patients with limited physiotherapy options. Nevertheless, this approach has yet to be tested in patients with burn injuries. Material and methodologyA prospective, randomised, crossover trial was conducted at a burn centre in a tertiary teaching hospital. The objective was to assess the effects of illusory movements on energy metabolism, insulin sensitivity, and skeletal muscle biology in adult critically ill patients with deep burns covering 30% or more of the total body surface. Two 30-minute daily sessions of functional proprioceptive stimulation were administered in addition to the standard physical therapy or physical activity regimen. Subsequently, the patients proceeded to the next stage of the trial, which involved a two-week crossover period. Measurements and main resultsDaily indirect calorimetry and calculation of nitrogen balance. Skeletal muscle biopsies from vastus lateralis for high resolution respirometry and euglycemic clamps to assess whole body glucose disposal were performed three times: at baseline and then fortnightly after each intervention period. The intervention was feasible and well tolerated in both early and late stages of burn disease. It did not change energy expenditure (mean change −33 [95% CI: −292;+227] kcal.24h−1, p = 0.79), nitrogen balance (+2.0 [95% CI: −3.1;+7.1] g N.1.73m−2 BSA.24h−1), or insulin sensitivity (mean change of insulin-mediated glucose disposal −0.33 [95% CI: −1.18;+0.53] mmol.h−1). At cellular level, the intervention increased the capacity of mitochondria to synthesize ATP by aerobic phosphorylation and tended to increase mitochondrial coupling. Functional capacities of fatty acid oxidation and electron transfer chain complexes I, II, and IV were unaffected. ConclusionsCompared to physical therapy alone, two daily sessions of functional proprioceptive stimulation in addition to usual physical therapy in patients with extensive burns did not change energy expenditure, insulin sensitivity, nitrogen balance, or energy substrate oxidation. At cellular level, the intervention improves the capacity of aerobic phosphorylation in skeletal muscle mitochondria. Clinical effects remain to be demonstrated in adequately powered trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.