Abstract
AbstractThe myeloma plasma cell is a postgerminal center, isotype-switched B cell. Chromosomal translocations into immunoglobulin heavy chain (IgH) switch regions, recombination sites in isotype switching, were initially demonstrated in myeloma cell lines but only a limited number of primary tumors. Molecular cytogenetics have since been applied to a series of primary tumors, in which IgH translocations accounted for many recurrent aberrations, among numerous nonrecurrent changes of unknown significance. This study, therefore, examined primary myeloma for IgH switch translocations using an established Southern blot assay that detected illegitimate switch recombinations. Sensitivity of the method was established by confining the analysis to 21 samples (4 stable, 17 progressive disease) with demonstrable legitimate isotype switches, of a total of 60 samples. Illegitimate recombinations were found in 12 or 57% (1 stable, 11 progressive) of 21 samples, comparable with estimates by molecular cytogenetics. The presence of switch translocations was supported by demonstrating up-regulated expression in myeloma marrow of cyclin D1 and fibroblast growth factor receptor 3 (FGFR3), candidate oncogenes on chromosomes 11q13 and 4p16, respectively. Illegitimate switches were detected most frequently in Sμ, with more than one region involved in 6 cases. Although these results confirmed the presence of switch translocations in primary myeloma, their absence in 43% of cases may imply heterogeneity of pathogenesis. In progressive disease, there was no significant difference between patients with and without illegitimate switches in survival, nor the prognostic indicators of β2microglobulin (β2m) and serum thymidine kinase (STK). Hence IgH switch translocations as a single entity are unlikely to be a feature of disease progression or have prognostic significance.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have