Abstract

Felids show remarkable phenotypic similarities and are conservative in behavioral and ecological traits. In contrast, they display a large range in body mass from around 1kg to more than 300kg. Body size and locomotory specializations correlate to skull, limb and vertebral skeleton morphology. With an increase in body mass, felids prey selection switches from small to large, from using a rapid skull or spine lethal bite for small prey, to sustained suffocating bite for large prey. Dietary specialization correlates to skull and front limbs morphology but no correlation was found on the spine or on the hind limb. The morphology of the sacroiliac junction in relation to ecological factors remained to be described. We are presenting a study of the overall shape of the iliac auricular surface with qualitative and quantitative analyses of its morphology. Our results demonstrate that body mass, prey selection, and bite type, crucially influence the auricular surface, where no significant effect of locomotor specialization was found. The outline of the surface is significantly more elevated dorso-caudally and the joint surface shows an irregular W-shape topography in big cats whereas the surface in small cats is smoother with a C-shape topography and less of an elevated ridge. Biomechanically, we suggest that a complex auricular surface increases joint stiffness and provides more support in heavier cats, an advantage for subduing big prey successfully during a sustained bite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call