Abstract

Estrogens, acting through their receptors (ERα and ERβ), regulate cell turnover in the pituitary gland, influencing cell proliferation and apoptosis across various species. However, their role in pituitary processes in seasonally reproducing animals remains poorly understood. This study aims to investigate the influence of estrogens, through the expression of their specific receptors, on the apoptosis of PD cells in relation to sexual maturity, the reproductive cycle, and pregnancy in a seasonal reproductive rodent (Lagostomus maximus maximus). ERα and caspase-3-cleaved (CASP3c) immunoreactive (-ir) cells were identified through immunohistochemistry. Apoptotic cells were detected using the TUNEL technique, with quantitative analysis facilitated by image analysis software, alongside measurement of serum estradiol levels using radioimmunoassay The immunostaining pattern for ERα included nuclear (ERαn) and cytoplasmic (ERαc) staining. In male viscachas, ERα expression significantly increases from immature to adult animals, correlating with the rise in serum estradiol levels and a decrease in the percentage of apoptotic cells. During the gonadal regression period in adult males, a decrease in the number of ER-ir cells and serum levels of estradiol corresponds with an increase in the number of apoptotic cells. In females, serum levels of estradiol peaked during mid-pregnancy, coinciding with a significant decrease in the number of apoptotic cells in the PD. Simultaneously, the percentage of ERαn-ir cells reaches its maximum value during late pregnancy, indicating the need to maintain the protective action of this gonadal hormone throughout the extensive pregnancy in these rodents. Regional ERα receptor expression and apoptotic cells appear to be associated with distinct PD cell populations and their hormonal responses. Finally, elevated estradiol levels coincide with diminished apoptotic cells in the male reproductive cycle and during pregnancy, suggesting an antiapoptotic role of estradiol in this species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call