Abstract

We showed that early weaned rats developed obesity, hyperleptinemia, leptin and insulin resistance at adulthood. Here, we studied the potential beneficial effects of Ilex paraguariensis aqueous solution upon body composition, glycemia, lipid and hormonal profiles, leptin signaling and NPY content. To induce early weaning, lactating rats' teats were blocked with a bandage to interrupt lactation during the last 3 days (EW group), while control offspring had free access to milk throughout lactation (C group). In postnatal day (PN) 150, EW offspring were subdivided into: EW and EW+ mate groups treated, respectively, with water or yerba mate aqueous solution (1 g/kg BW/day, gavage) during 30 days. C offspring received water for gavage. In PN180, offspring were killed. EW+ mate group presented lower body weight (-10 %), adipose mass (retroperitoneal:-40 % and epididymal:-44 %), total body fat (-43 %), subcutaneous fat (-46 %), visceral adipocyte area (-21 %), triglyceridemia (-31 %) and hypothalamic NPY content (-37 %) compared to EW group. However, hyperglycemia and lower HDL-c levels observed in EW group were not reverted with mate treatment. Although the hyperleptinemia, lower hypothalamic JAK2 and pSTAT3 content of EW group were not corrected by mate treatment, the hyperphagia and higher hypothalamic SOCS-3 content were normalized in EW+ mate group, indicating that the central leptin resistance could be restored. Thus, the therapy with yerba mate solution was capable to reverse abdominal obesity, leptin resistance and hypertriglyceridemia, suggesting an important role of this bioactive component in the management of obesity in this programming model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.