Abstract

Abstract Background and Aims Regulatory T cells (Tregs) are key regulators in maintaining tissue homeostasis. Disrupted immune homeostasis is associated with Crohn’s disease (CD) pathogenesis. Thus, Treg therapy represents a promising long-acting treatment to restore immune balance in the diseased intestine. CAR (Chimeric Antigen Receptor) T-cell therapy has revolutionized cancer treatment. This innovative approach also provides the opportunity to improve therapy for CD. By targeting a disease-relevant protein, Interleukin-23 receptor (IL23R), we engineered Tregs expressing IL23R-CAR for treating active CD. Methods Intestinal IL23R expression from active CD was verified by immunohistochemical analysis. Phenotypic and functional characteristics of IL23R-CAR Tregs were assessed using in vitro assays and their migration capacity was monitored in a xenograft tumor model. Transcriptomic and proteomic analyses were performed to associate molecular profiles with IL23R-CAR Treg activation against colon biopsy-derived cells from active CD patients. Results Our study showed that IL23R-CAR displayed negligible tonic signalling and strong signal-to-noise ratio. IL23R-CAR Tregs maintained regulatory phenotype during in vitro expansion, even when chronically exposed to proinflammatory cytokines and target antigen. IL23R engagement on IL23R-CAR Tregs triggered CAR-specific activation and significantly enhanced their suppressive activity. Also, IL23R-CAR Tregs migrated to IL23R-expressing tissue in humanized mice. Finally, IL23R-CAR Tregs elicited a specific activation against colon biopsy-derived cells from active CD, suggesting an efficient CAR engagement in active CD. Molecular profiling of CD patient biopsies also revealed transcriptomic and proteomic patterns associated with IL23R-CAR activation. Conclusions Overall, our results demonstrate that IL23R-CAR Tregs represent a promising therapy for active CD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.