Abstract

Because of a paucity of effective treatment options, metastasis is still a major cause for HCC-associated mortality. The molecular mechanism of inflammation-induced HCC metastasis is open for study. Here, we characterized the function of solute carrier family 7 member 11 (SLC7A11) in inflammation-related HCC metastasis and probed therapy strategies for this subpopulation of patients. Elevated expression of SLC7A11 was positively correlated with poor tumor differentiation, and higher tumor-nodule-metastasis stage, and indicated poor prognosis in human HCC. SLC7A11 increased HIF1α expression through reducing α-ketoglutarate (αKG) level by exporting glutamate. SLC7A11 up-regulated programmed death ligand 1 (PD-L1) and colony-stimulating factor 1 (CSF1) expression through αKG-HIF1α cascade. SLC7A11 overexpression in HCC cells promoted intratumoral tumor-associated macrophage (TAM) and myeloid-derived suppressor cell (MDSC) infiltration through the CSF1/colony-stimulating factor 1 receptor (CSF1R) axis, whereas knockdown of CSF1 attenuated SLC7A11-mediated intratumoral TAM and MDSC infiltration and HCC metastasis. Depletion of either TAMs or MDSCs decreased SLC7A11-mediated HCC metastasis. Furthermore, the combination of CSF1R inhibitor BZL945 and anti-PD-L1 antibody blocked SLC7A11-induced HCC metastasis. In addition, IL-1β up-regulated SLC7A11 expression through the interleukin-1 receptor type 1 (IL-1R1)/extracellular signal-regulated kinase/specificity protein 1 pathway. SLC7A11 knockdown impaired IL-1β-promoted HCC metastasis. Anakinra, an IL-1R1 antagonist, reversed IL-1β-promoted HCC metastasis. In human HCC tissues, SLC7A11 expression was positively associated with HIF1α, PD-L1, and CSF1 expression and intratumoral TAM and MDSC infiltration. IL-1β-induced SLC7A11 overexpression up-regulated PD-L1 and CSF1 through the αKG/HIF1α axis, which promoted TAM and MDSC infiltration. Interruption of this oncogenic loop may provide a promising therapy strategy for the inhibition of SLC7A11-mediated HCC metastasis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.