Abstract

We have previously verified that neonatal hepatitis B vaccination induced hippocampal neuroinflammation and behavior impairments in mice. However, the exact mechanism of these effects remain unclear. In this study, we observed that neonatal hepatitis B vaccination induced an anti-inflammatory cytokine response lasting for 4–5 weeks in both the serum and the hippocampus, primarily indicated by elevated IL-4 levels. Three weeks after the vaccination schedule, however, hepatitis B vaccine (HBV)-mice showed delayed hippocampal neuroinflammation. In periphery, IL-4 is the major cytokine induced by this vaccine. Correlation analyses showed a positive relationship in the IL-4 levels between serum and hippocampus in HBV-mice. Thus, we investigated whether neonatal over-exposure to systemic IL-4 influences brain and behavior. We observed that mice injected intraperitoneally with recombinant mouse IL-4 (mIL-4) during early life had similar neuroinflammation and cognition impairment similar to those induced by neonatal hepatitis B vaccination. Next, the mechanism underlying the effects of IL-4 on brain in mice was explored using a series of experiments. In brief, these experiments showed that IL-4 mediates the delayed neurobehavioral impairments induced by neonatal hepatitis B vaccination, which involves the permeability of neonatal blood–brain barrier and the down-regulation of IL-4 receptor. This finding suggests that clinical events concerning neonatal IL-4 over-exposure, including neonatal hepatitis B vaccination and allergic asthma in human infants, may have adverse implications for brain development and cognition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call