Abstract

T and B cells exhibit complex responses to the combination of IL-2 and IL-4, each of which can act as a growth or differentiation factor for lymphocytes under certain circumstances. To characterize better the mechanism by which these cytokines interact, mRNA levels of the signal-transducing p75 beta-chain of the IL-2R were analyzed. These studies show that IL-4 increases expression of the IL-2R beta-chain in mouse splenic B and T cells, and the response of B cells was potentiated by concurrent cross-linking of surface Ig. Kinetic analysis of the IL-2R beta response showed a slow onset but maintenance of peak levels of expression between 10 and 24 h. These data indicate that the pathways involved in the lymphocyte response to IL-4 differ for IL-2R and IL-4R, and that the induction of IL-4R precedes the increase in IL-2R. The effect of IL-4 on IL-2R beta mRNA levels was mediated in part by an increase in the rate of gene transcription, and was associated with increased IL-2 binding in the absence of any change in IL-2R alpha levels. In addition, IL-4 increased the level of IL-2R beta expression in thymocytes. Proliferation assays demonstrated that pretreatment of splenic T cells with IL-4 led to a substantial increase in IL-2-dependent proliferation. These results are consistent with a mechanism by which IL-4 can prime T cells and certain thymocytes for responsiveness to IL-2 by increasing IL-2R p75 chain gene expression, independent of general T cell activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.