Abstract

Calcium influx is crucial for T cell activation and differentiation. The detailed regulation of this process remains unclear. We report here that golli protein, an alternatively spliced product of the myelin basic protein gene, plays a critical role in regulating calcium influx in T cells. Golli-deficient T cells were hyperproliferative and showed enhanced calcium entry upon T cell receptor stimulation. We further found that golli regulates calcium influx in T cells through the inhibition of the store depletion-induced calcium influx. Mutation of the myristoylation site on golli disrupted its association with the plasma membrane and reversed its inhibitory action on Ca2+ influx, indicating that membrane association of golli was essential for its inhibitory action. These results indicate that golli functions in a unique way to regulate T cell activation through a mechanism involving the modulation of the calcium homeostasis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.