Abstract
BackgroundNatural killer (NK) cells play cytotoxic roles by targeting tumor cells or virus infected cells, they also play regulatory roles by secreting cytokines and chemokines. Transforming growth factor (TGF)-β and interleukin (IL)-10 are important immunosuppressive cytokines potentially related to the immune dysregulation that occurs in the infection of human immunodeficiency virus (HIV). NK cells are an important source of TGF-β and a main early producer of IL-10 in response to viral infection. Here, we evaluated the percentages of IL-10+ and TGF-β+ NK cells in HIV-infected patients relative to healthy controls (HCs).MethodsStudy participants (n = 63) included 31 antiretroviral treatment (ART)-naïve HIV-infected patients, 17 ART-treated HIV-infected patients, and 15 HIV-negative HCs. Expression of IL-10 or TGF-β in NK cells was examined by flow cytometry, and the influences of recombinant IL-10 (rIL-10) or recombinant TGF-β (rTGF-β) on NK cell function were investigated in vitro.ResultsCompared with HCs, ART-naïve HIV-infected patients had increased percentages of IL-10+ (2.0% vs. 0.4%, p = 0.015) and TGF-β+ (4.5% vs. 2.1%, p = 0.022) NK cells, and ART-treated patients also had a higher percentage of IL-10+ NK cells (2.5% vs. 0.4%, p = 0.002). The percentages of IL-10+ and TGF-β+ NK cells were positively correlated (r = 0.388; p = 0.010). The results of in vitro experiments demonstrated that rIL-10 and rTGF-β inhibited NK cell CD107a expression (p = 0.037 and p = 0.024, respectively), IFN-γ secretion (p = 0.006, p = 0.016, respectively), and granzyme B release after stimulation (p = 0.014, p = 0.040, respectively).ConclusionsOur data suggest that the percentages of IL-10+ or TGF-β+ NK cells are increased in HIV-infected patients, and that rIL-10 and/or rTGF-β can inhibit NK cell functions in vitro, providing a potential therapeutic target for strategies aimed at combating HIV infection.
Highlights
Natural killer (NK) cells play cytotoxic roles by targeting tumor cells or virus infected cells, they play regulatory roles by secreting cytokines and chemokines
The results of in vitro experiments demonstrated that Recombinant interleukin (rIL)-10 and recombinant Transforming growth factor-β (TGF-β) (rTGF-β) inhibited NK cell CD107a expression (p = 0.037 and p = 0.024, respectively), IFN-γ secretion (p = 0.006, p = 0.016, respectively), and granzyme B release after stimulation (p = 0.014, p = 0.040, respectively)
Our data suggest that the percentages of IL-10+ or Transforming growth factor (TGF)-β+ NK cells are increased in human immunodeficiency virus (HIV)-infected patients, and that recombinant IL-10 (rIL-10) and/or rTGF-β can inhibit NK cell functions in vitro, providing a potential therapeutic target for strategies aimed at combating HIV infection
Summary
Natural killer (NK) cells play cytotoxic roles by targeting tumor cells or virus infected cells, they play regulatory roles by secreting cytokines and chemokines. Transforming growth factor (TGF)-β and interleukin (IL)-10 are important immunosuppressive cytokines potentially related to the immune dysregulation that occurs in the infection of human immunodeficiency virus (HIV). NK cells account for 2%–18% of the lymphocytes in peripheral blood and express various inhibitory and activating receptors, including C-type lectin-like, natural cytotoxicity, and killer cell immunoglobulin-like receptors [2, 3]. CD56dim NK cells release perforin or granzymes, which play a key role in killing target cells, whereas CD56bright NK cells secrete interleukin (IL)-10, interferon (IFN)-γ, transforming growth factor (TGF)-β and other cytokines, to exert immunomodulatory effects [4,5,6]
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have