Abstract

BackgroundTheiler’s virus infection induces chronic demyelinating disease in mice and has been investigated as an infectious model for multiple sclerosis (MS). IL-1 plays an important role in the pathogenesis of both the autoimmune disease model (EAE) and this viral model for MS. However, IL-1 is known to play an important protective role against certain viral infections. Therefore, it is unclear whether IL-1-mediated signaling plays a protective or pathogenic role in the development of TMEV-induced demyelinating disease.MethodsFemale C57BL/6 mice and B6.129S7-Il1r1tm1Imx/J mice (IL-1R KO) were infected with Theiler’s murine encephalomyelitis virus (1 x 106 PFU). Differences in the development of demyelinating disease and changes in the histopathology were compared. Viral persistence, cytokine production, and immune responses in the CNS of infected mice were analyzed using quantitative PCR, ELISA, and flow cytometry.ResultsAdministration of IL-1β, thereby rending resistant B6 mice susceptible to TMEV-induced demyelinating disease, induced a high level of Th17 response. Interestingly, infection of TMEV into IL-1R-deficient resistant C57BL/6 (B6) mice also induced TMEV-induced demyelinating disease. High viral persistence was found in the late stage of viral infection in IL-1R-deficient mice, although there were few differences in the initial anti-viral immune responses and viral persistent levels between the WT B6 and IL-1R-deficiecent mice. The initial type I IFN responses and the expression of PDL-1 and Tim-3 were higher in the CNS of TMEV-infected IL-1R-deficient mice, leading to deficiencies in T cell function that permit viral persistence.ConclusionsThese results suggest that the presence of high IL-1 level exerts the pathogenic role by elevating pathogenic Th17 responses, whereas the lack of IL-1 signals promotes viral persistence in the spinal cord due to insufficient T cell activation by elevating the production of inhibitory cytokines and regulatory molecules. Therefore, the balance of IL-1 signaling appears to be extremely important for the protection from TMEV-induced demyelinating disease, and either too much or too little signaling promotes the development of disease.

Highlights

  • Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs) are involved in the production of various cytokines that are associated with the innate immune response against many different infectious agents

  • The results clearly indicated that the levels of IL-17A-producing Th17 cells in mice treated with either LPS or IL-1β were significantly elevated compared to PBS-treated control mice (Figure 1A and B)

  • These results strongly suggest that IL-1β can promote the pathogenesis of Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelinating disease by enhancing the induction of pathogenic Th17 cells rather than altering the Th1 response

Read more

Summary

Introduction

Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs) are involved in the production of various cytokines that are associated with the innate immune response against many different infectious agents. TLRs and IL-1Rs share many structural similarities and utilize common downstream adaptive molecules after activation by their ligands These innate immune responses induced by TLRs and IL-1Rs are known to play a protective role against various microbes [1]. IL-1RI-deficient mice are susceptible to certain pathogens, including Listeria monocytogenes [1]. These responses to IL-1β are apparently critical for protection from many types of viruses and microbes. IL-1 is known to play an important protective role against certain viral infections It is unclear whether IL-1-mediated signaling plays a protective or pathogenic role in the development of TMEV-induced demyelinating disease. Cytokine production, and immune responses in the CNS of infected mice were analyzed using quantitative PCR, ELISA, and flow cytometry

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.