Abstract

Solar UV light comprises UVB wavelengths (290-320 nm) and UVA wavelengths (320-400 nm). UVB radiation reaches the epidermis and, to a lesser extent, the upper part of the dermis, while UVA radiation penetrates more deeply into human skin. Existing studies have demonstrated that UV-irradiated epidermal keratinocytes release cytokines that indirectly promote MMP-1 production in dermal fibroblasts. In this study, we first investigated the effect of IL-1 on MAPK activity, c-Jun and c-Fos mRNA expression, and MMP-1 and MMP-2 production in UVA-irradiated human dermal fibroblasts. The results showed that UVA irradiation dose-dependently increased MMP-1 but not MMP-2 production in human skin fibroblasts. IL-1alpha and IL-1beta promoted MMP-1 but not MMP-2 production in UVA-irradiated fibroblasts. Both IL-1alpha and IL-1beta activated MAP kinase, significantly elevating c-Jun and c-Fos mRNA expression. We then investigated the indirect effect of UVB-irradiated keratinocyte culture medium on MMP-1 production in UVA-irradiated primary cultured human dermal fibroblasts and the effect of IL-1Ra. The results showed that cell culture medium from UVB-irradiated keratinocytes increased MMP-1 production in UVA-irradiated fibroblasts, and IL-1Ra dose-dependently inhibited MMP-1 production. IL-1Ra dose-dependently inhibited c-Jun mRNA expression of fibroblasts with no significant effect on c-Fos mRNA expression. These results demonstrate that UVB-irradiated keratinocytes promoted MMP-1 production in UVA-irradiated fibroblasts in a paracrine manner while IL-1Ra reduced MMP-1 production through inhibiting c-Jun mRNA expression. Collectively, our data suggest that IL-1 plays an important role in the dermal collagen degradation associated with UV-induced premature aging of the skin and IL-1Ra may be applied for the prevention and treatment of photoaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.