Abstract

IL-11 and IL-6 are fibroblast-derived cytokines with overlapping biologic properties. To determine whether IL-11 and IL-6 are similarly regulated, we characterized the effects of rIL-1 and TGF-beta (beta 1 and beta 2) on human lung fibroblast IL-11 production and compared this regulation with that of IL-6. Unstimulated fibroblasts did not produce significant amounts of IL-11, whereas rIL-1 alpha and TGF-beta were dose-dependent stimulators of IL-11 protein production, mRNA accumulation, and gene transcription. rIL-1 alpha and TGF-beta also interacted in a synergistic fashion to further increase IL-11 protein production and mRNA accumulation. The effects of rIL-1 and TGF-beta individually were not altered by the cyclic nucleotide-dependent protein kinase inhibitor HA1004, protein kinase C (PKC) inhibition with staurosporine, or chronic phorbol ester preincubation, or the calmodulin antagonists W7 and TFP. The effects of rIL-1 alpha and TGF-beta in combination were also unaltered by HA1004, staurosporine, and chronic phorbol ester exposure. A23187, however, did induce IL-11 mRNA accumulation and W7 and TFP did reverse the synergistic stimulation caused by rIL-1 and TGF-beta in combination. In contrast with the regulation of IL-11, TGF-beta did not effectively stimulate IL-6 mRNA accumulation, rIL-1 alpha was a more potent stimulator of IL-6 than IL-11 production, and rIL-1-induced IL-6 mRNA accumulation was augmented by W7 and TFP. These studies demonstrate that: 1) rIL-1, TGF-beta, and agents that increase intracellular calcium stimulate lung fibroblast IL-11; 2) the IL-11 stimulatory effects of rIL-1 and TGF-beta are, at least partially, transcriptionally mediated and are the result of signal transduction pathways that are largely PKC, cyclic nucleotide, and calmodulin independent; and 3) rIL-1 and TGF-beta interact in a synergistic fashion to further increase fibroblast IL-11 production and that this synergy is mediated by a largely PKC- and cyclic nucleotide-independent and calmodulin-dependent activation pathway. Importantly, they also demonstrate that rIL-1 and TGF-beta stimulate lung fibroblast IL-6 and IL-11 production via distinct and differentially regulatable activation pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.