Abstract

We describe the growth and optical properties of III-V semiconductor nanowires and their application to nanoscale photonic devices such as Fabry-Perot cavity, waveguides, optically-pumped lasers, and lightemitting diodes. The nanowires were grown by selective-area metalorganic vapor phase epitaxy (SA-MOVPE) on the (111) oriented substrates. Nanowires containing heterostructures in their radial direction, that is, core-shell heterostructures, have also been realized by controlling the growth mode during SA-MOVPE. The nanowires were characterized by micro-photoluminescence measurements and those detached from the grown substrate showed resonant peaks associated with Fabry-Perot cavity modes. It was simultaneously shown that core-shell hetereostructured nanowires exhibited stronger photoluminescence than bare nanowires due to reduced surface non-radiative recombination. Furthermore, core-shell nanowires exhibited lasing oscillation originating from the cavity formed by both end facets at pulsed-laser excitation. Meanwhile, electroluminescence from core-shell nanowires was also demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.