Abstract

Silicon-based multi-cavity microdischarge reactors allow the generation of large-area uniform glow discharges over a wide pressure range up to atmospheric pressure. These devices, fabricated using micro electro-mechanical system technology, have shown complex interactions between the individual cavities. To discriminate these interactions, devices with only one shallow vertical cavity are studied here. Operation characteristics are investigated using electrical and optical analysing techniques. The spatial and temporal dynamics of the discharge are investigated for positive and negative voltage polarity of the applied ac voltage ramp by phase-resolved imaging. Within each voltage half-period, emission from the single cavity shows repetitive pulsing features and distinct spatial distributions. In the positive half-period, ring-shaped structures develop, while the negative half-period is distinguished by a bell-shaped intensity distribution. Effects of pressure and operation frequency on the spatial and temporal intensity profiles are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.