Abstract

The need for more efficient power cycles has attracted interest in super-critical CO2 (sCO2) cycles. However, the effects of high CO2 dilution on auto-ignition at extremely high pressures has not been studied in depth. As part of the effort to understand oxy-fuel combustion with massive CO2 dilution, we have measured shock tube ignition delay times (IDT) for methane/O2/CO2 mixtures and hydrogen/O2/CO2 mixtures using sidewall pressure and OH* emission near 306 nm. Ignition delay time was measured in two different facilities behind reflected shock waves over a range of temperatures, 1045–1578 K, in different pressures and mixture regimes, i.e., CH4/O2/CO2 mixtures at 27–286 atm and H2/O2/CO2 mixtures at 37–311 atm. The measured data were compared with the predictions of two recent kinetics models. Fair agreement was found between model and experiment over most of the operating conditions studied. For those conditions where kinetic models fail, the current ignition delay time measurements provide useful target data for development and validation of the mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call