Abstract
<div>A rapid compression and expansion machine (RCEM) was used to experimentally investigate the ignition phenomena of dielectric-barrier discharge (DBD) in engine conditions. The effect of elevated pressure and temperature on ignition phenomena of a methane/air premixed mixture was investigated using a DBD igniter. The equivalence ratio was changed to elucidate the impact of DBD on flame kernel development. High-speed imaging of natural light and OH* chemiluminescence enabled visualization of discharges and flame kernel. According to experimental findings, the discharges become concentrated and the intensity increases as the pressure and temperature rise. Under different equivalence ratios, the spark ignition (SI) system has a shorter flame development time (FDT) as compared with the DBD ignition system.</div>
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have