Abstract

This work presents the results of Thomson scattering measurements, optical emission spectroscopy and laser absorption spectroscopy applied to a high pressure nanosecond pulsed helium micro-discharge. All data are recorded with high temporal resolution, giving an insight into the processes determining the discharge dynamics. From Thomson scattering measurements, the electron velocity distribution function is determined. Photo-ionization of helium Rydberg molecules presents a complication for the direct measurement of the electron density by Thomson scattering. Laser pulse energy variation measurements however allow to obtain absolute Rydberg state densities to be obtained. For the first time, the electron velocity distribution function and total Rydberg molecules density for a high-pressure pure helium discharge are reported in this paper. These measurements provide new insights into high pressure pure helium discharge chemical pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call