Abstract
The oral route is the best way to administer a drug; however, fitting peptide drugs in this route is a major challenge. In insulin cases, less than 0.5% of the administered dose achieves systemic circulation. Oral delivery by nanoparticles can increase insulin permeability across the intestinal epithelium while maintaining its structure and activity until release in the gut. This system can be improved to increase permeability across intestinal cells through active delivery. This study aimed to improve a nanoparticle formulation by promoting functionalization of its surface with immunoglobulin G to increase its absorption by intestinal epithelium. The characterization of formulations showed an adequate size and a good entrapment efficiency. Functionalized nanoparticles led to a desirable increase in insulin release time. Differential scanning calorimetry, infrared spectroscopy and paper chromatography proved the interactions of nanoparticle components. With immunoglobulin G, the nanoparticle size was slightly increased, which did not show aggregate formation. The developed functionalized nanoparticle formulation proved to be adequate to carry insulin and potentially increase its internalization by epithelial gut cells, being a promising alternative to the existing formulations for orally administered low-absorption peptides.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have