Abstract

New biomarkers for early diagnosis of gastric cancer (GC), the second leading cause of cancer-related death, are urgently needed. IGFBP7, known to play various roles in multiple tumours, is complexly regulated across diverse cancer types, as evidenced by our pancancer analysis. Bioinformatics analysis revealed that IGFBP7 expression was related to patient prognosis, tumour clinicopathological characteristics, tumour stemness, microsatellite instability and immune cell infiltration, as well as the expression of oncogenes and immune checkpoints. GSEA links IGFBP7 to several cancer-related pathways. IGFBP7 deficiency inhibited GC cell proliferation and migration invitro. Furthermore, an invivo nude mouse model revealed that IGFBP7 downregulation suppressed the tumorigenesis of GC cells. Western blotting analysis showed that the JAK1/2-specific inhibitor ruxolitinib could rescue alterations induced by IGFBP7 overexpression in GC cells. Additionally, our bioinformatics analysis and invitro assays suggested that IGFBP7 is regulated by DNA methylation at the genetic level and that the RNA m6A demethylase FTO modulates it at the posttranscriptional level. This study emphasizes the clinical relevance of IGFBP7 in GC and its influence on cell proliferation and migration via the JAK/STAT signalling pathway. This study also highlights the regulation of IGFBP7 in GC by DNA and m6A RNA methylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.