Abstract

To investigate the effect of gamma interferon (IFN-γ) on corneal epithelial pyroptosis in an experimental dry eye (DE) model and explore the underlying molecular mechanisms. Experimental DE was established in adult wild-type (WT) C57BL/6 mice and Ifng-knockout mice on a C57BL/6 background by subcutaneous injection of scopolamine (1.5 mg/0.3 mL, three times per day) and exposure to desiccating stress. An immortalized human corneal epithelial cell line (HCE-T) was treated with IFN-γ under hyperosmolar conditions. Corneal epithelial defects, tear production, and conjunctival goblet cells were detected by fluorescein sodium staining, the phenol red cotton test, and periodic acid-Schiff staining. The mRNA expression was measured by quantitative real-time PCR. Changes in protein expression were analyzed by Western blotting and immunofluorescence staining. Cell Counting Kit-8 and lactate dehydrogenase assays and in situ TUNEL staining were used to assess cell death. The expression of IFNG and its related genes was increased in the corneas of DE mice, whereas genetic deletion of Ifng ameliorated desiccating stress-induced dry eye symptoms. We further found that IFN-γ activated the JAK2/STAT1 signaling pathway inducing corneal epithelial pyroptosis. Topical application of a STAT1 inhibitor in vivo or siRNA targeting STAT1 in vitro suppressed pyroptosis of corneal epithelial cells. In addition, the production of reactive oxygen species (ROS) was elevated in DE, and a reduction in excessive ROS release prevented pyroptosis. The increase in IFN-γ participates in the pathogenesis of dry eye and promotes corneal epithelial pyroptosis by activating the JAK2/STAT1 signaling pathway. Oxidative stress might be in downstream of JAK2/STAT1, thereby contributing to pyroptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call