Abstract
The existence and uniqueness of quantizations that are equivariant with respect to conformal and projective Lie algebras of vector fields were recently obtained by Duval, Lecomte and Ovsienko. In order to do so, they computed spectra of some Casimir operators. We give an explicit formula for those spectra in the general framework of I FFT-algebras classified by Kobayashi and Nagano. We also define t ree-like subsets of eigenspaces of those operators in which eigenvalues can be compared to show the existence of IFFT-equivariant quantizations. We apply our results to prove the existence and uniqueness of quantizations that are equivariant with respect to the infinitesimal action of the symplectic (resp. pseudo-orhogonal) group on the symplectic (resp. pseudo-orthogonal) Grassmann manifold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.