Abstract

Osteocytes are considered to be nonproliferative cells that are terminally differentiated from osteoblasts. Osteoblasts embedded in the bone extracellular matrix (osteoid) express the Pdpn gene to form cellular dendrites and transform into preosteocytes. Later, preosteocytes express the Dmp1 gene to promote matrix mineralization and thereby transform into mature osteocytes.This process is called osteocytogenesis. IDG-SW3 is a well-known cell line for in vitro studies of osteocytogenesis. Many previous methods have used collagen I as the main or the only component of the culturing matrix. However, in addition to collagen I, the osteoid also contains a ground substance, which is an important component in promoting cellular growth, adhesion, and migration. In addition, the matrix substance is transparent, which increases the transparency of the collagen I-formed gel and, thus, aids the exploration of dendrite formation through imaging techniques. Thus, this paper details a protocol to establish a 3D gel using an extracellular matrix along with collagen I for IDG-SW3 survival. In this work, dendrite formation and gene expression were analyzed during osteocytogenesis. After 7 days of osteogenic culture, an extensive dendrite network was clearly observed under a fluorescence confocal microscope. Real-time PCR showed that the mRNA levels of Pdpn and Dmp1 continually increased for 3 weeks. At week 4, the stereomicroscope revealed an opaque gel filled with mineral particles, consistent with the X-ray fluorescence (XRF) assay. These results indicate that this culture matrix successfully facilitates the transition from osteoblasts to mature osteocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call