Abstract

An authenticated (AE) scheme simultaneously achieves two security goals: confidentiality and authenticity. AE can be divided into symmetric AE and asymmetrical (public key) AE. In a symmetric AE scheme, deniability is gained automatically. However, a public key AE scheme can not gain deniability automatically; on the contrary, it provides non-repudiation. In this paper, we address a question on deniability of public key AE. Of course, we can achieve this goal by authentication followed by encryption method. However, such method has the following two weaknesses: (1) the computational cost and communication overhead are the sum of two cryptographic primitives; (2) it is complex to design cryptographic protocols with deniable authentication and confidentiality using two cryptographic primitives. To overcome the two weaknesses, we propose a new concept called deniable authenticated (DAE) that can achieve both the functions of deniable authentication and public key simultaneously, at a cost significantly lower than that required by the authentication followed by encryption method. This single cryptographic primitive can simplify the design of cryptographic protocols with deniable authentication and confidentiality. In particular, we construct an identity-based deniable authenticated (IBDAE) scheme. Our construction uses tag-key encapsulation mechanism (KEM) and data encapsulation mechanism (DEM) hybrid techniques, which is more practical for true applications. We show how to construct an IBDAE scheme using an identity-based deniable authenticated tag-KEM (IBDATK) and a DEM. We also propose an IBDATK scheme and prove its security in the random oracle model. For typical security level, our scheme is at least 50.7 and 22.7 % faster than two straightforward authentication followed by encryption schemes, respectively. The communication overhead is respectively reduced at least 21.3 and 31.1 %. An application of IBDAE to an e-mail system is described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.