Abstract
Due to the diversity of molecular building blocks, the two-dimensional (2D) metal-organic frameworks (MOFs) are ideal platforms to realize exotic lattice models in condensed matter theory. In this work, we demonstrate the universal existence of topological corner states in 2D MOFs with a star lattice configuration, and confirm the intriguing higher-order nontrivial topology in the energy window between two Kagome-bands, or between Dirac-band and four-band. Furthermore, combining first-principles calculations and scanning tunneling microscopy measurements, the unique topological corner state is directly identified in monolayer Ni3(HITP)2 (HITP = 2,3,6,7,10,11-hexaiminotriphenylene) grown on the Au(111) substrate. Our results not only illustrate the first organic topological state in the experiments, but also offer an exciting opportunity to study higher-order topology in 2D MOFs with the large insulating band gap.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.