Abstract

As the centerpiece of ecosystems and human societies, river basins are complex social–ecological systems (SESs) that depend on the natural flow regime and the hydrologic variability to adapt to changes and absorb disturbances. Anthropogenic and climate change disturbances destabilize river systems. Therefore, a resilience question arises: What is the carrying capacity of a river basin, i.e., how much disturbance can a river basin take until the system undergoes a regime shift? To answer this question, this study aims to identify regime shifts, thresholds, and the carrying capacity of the transboundary Rio Grande–Rio Bravo (RGB) basin using 110 years of monthly streamflow data. To address this research question, first, gauged (regulated) and naturalized streamflow data is collected; if naturalized flows are not available, they are calculated through streamflow naturalization. Second, streamflow standardization is estimated using the streamflow drought index. Third, a regime shift assessment is performed using Fisher Index, and fourth, the nonparametric Mann-Kendall test is used to assess the Sustainable Regime Hypothesis which evaluates regime shifts and alternative regimes. Results demonstrate that resilience thresholds are surpassed, and regime shifts, including early warning signals, occurred in multiple locations of a transboundary basin. The present study highlights the importance of assessing the carrying capacity of a river basin; hence, evaluating regime transitions, including identifying early warning signals and thresholds, is critical in managing for sustainability and ecological resilience of SESs. Looking ahead, the integration of ecological resilience theory into water management has the potential to recognize the sustainable carrying capacity of river basins at the local, regional, and international scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call