Abstract

We extend the vortex-surface field (VSF), whose isosurface is a vortex surface consisting of vortex lines, to identify vortex tubes and sheets in homogeneous isotropic turbulence. The VSF at a time instant is constructed by solving a pseudo-transport equation. This equation is convected by a given instantaneous vorticity obtained from direct numerical simulation. In each pseudo-time step, we develop a novel local optimization algorithm to minimize a hybrid VSF constraint, balancing the accuracy and smoothness of VSF solutions. This key improvement makes the numerical construction of VSFs feasible for arbitrarily complex flow fields, as a general flow diagnostic tool. In the visualization of VSF isosurfaces in decaying homogeneous isotropic turbulence, the initial curved vortex sheets first evolve into vortex tubes, and then the vortex tubes are stretched and tangled, constituting a complex network. Some vortex tubes exhibit helical geometry, which suggests the important role of vortex twisting in the generation of small-scale structures in energy cascade.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call