Abstract

In this study, characteristics of oxidation debris (OD) and its stripping mechanism from graphene oxide (GO) were explored. The results demonstrated that OD contains three components, namely, protein-, fulvic acid-, and humic acid-like substances; among these, protein-like substances with lower molecular weight and higher hydrophilicity were most liable to be stripped from GO and were the primary components stripped from GO at pH < 10, whereas humic acid- and fulvic acid-like substances were stripped from GO at pH > 10. During the stripping of OD, hydrogen bonds from carboxyl and carbonyl were the first to break, followed by hydrogen bonds from epoxy. Subsequently, π-π interactions were broken, and hydrogen bond interactions induced by hydroxyl groups were the hardest to break. After the stripping of OD, the recombination of OD on GO was observed, and regions containing relatively fewer oxygen-containing functional groups were favorable binding sites for the readsorbed OD. The stripping and recombination of OD on GO resulted in an uneven GO surface, which should be considered during the development of GO-based environmental materials and the evaluation of their environmental behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call