Abstract
To increase crops yields, applying large amounts of fertilizers has become increasingly common in agricultural regions, resulting in NO3--N groundwater pollution. Agricultural non-point pollution is the main source of groundwater NO3--N pollution. To ensure drinking water safety and quality, it is crucial to clarify the sources of NO3--N pollution in agricultural regions. In this study, 35 sampling sites were randomly selected in the Qingdao agricultural area in 2009 and 2019. The spatial distribution of NO3--N concentration was analyzed by the inverse distance weighting method (IDW). The nitrogen and oxygen isotopes were used as a tool to trace sources of NO3--N and the SIAR model was used to quantify contribution proportion of pollution sources. The results showed that the concentration of NO3--N (average) in groundwater in Qingdao has been reduced from 38.49 mg·L-1 in 2009 to 22.37 mg·L-1 in 2019, but it is still higher than the maximum allowable concentration of NO3--N in drinking water set by the World Health Organization (WHO). The NO3--N concentration gradually increased from south to north both in 2009 and 2019. The cross diagram of δ15N-NO3- and δ18O-NO3- show that the main sources of NO3--N in groundwater in Qingdao are chemical fertilizers, soil nitrogen, and manure and sewage. Water isotopes indicate that precipitation was the main source of groundwater in Qingdao. The SIAR model results indicated that the contribution of each source ranked as follows:manure and sewage (47.42%) > soil nitrogen (27.80%) > chemical fertilizer (14.32%) > atmospheric nitrogen depositions (10.43%). From 2009 to 2019, the quality of groundwater in Qingdao has been improved, but NO3--N pollution still cannot be ignored. According to the results, prevention and control should be made to ensure the safety of drinking water and the sustainable development of agriculture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.