Abstract

We examine the sensitivity of the Global Positioning System (GPS) to non-tidal loading for a set of continental Eurasia permanent stations. We utilized daily vertical displacements available from the Nevada Geodetic Laboratory (NGL) at stations located at least 100 km away from the coast. Loading-induced predictions of displacements of earth’s crust are provided by the Earth-System-Modeling Group of the GFZ (ESMGFZ). We demonstrate that the hydrological loading, supported by barystatic sea-level changes to close the global mass budget (HYDL + SLEL), contributes to GPS displacements only in the seasonal band. Non-tidal atmospheric loading, supported by non-tidal oceanic loading (NTAL + NTOL), correlates positively with GPS displacements for almost all time resolutions, including non-seasonal changes from 2 days to 5 months, which are often considered as noise, intra-seasonal and seasonal changes with periods between 4 months and 1.4 years, and, also, inter-annual signals between 1.1 and 3.0 years. Correcting the GPS vertical displacements by NTAL leads to a reduction in the time series variances, evoking a whitening of the GPS stochastic character and a decrease in the standard deviation of noise. Both lead, on average, to an improvement in the uncertainty of the GPS vertical velocity by a factor of 2. To reduce its impact on the GPS displacement time series, we recommend that NTAL is applied at the observation level during the processing of GPS observations. HYDL might be corrected at the observation level or remain in the data and be applied at the stage of time series analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.