Abstract

The loss of tropical forest resilience has been linked to increased climate variability and associated droughts, but the response of tropical trees to climate extremes remains poorly understood. This limits our ability to design effective forest adaptation strategies in the tropics. Here we analyse the potential of using young trees to analyse climate variability and extremes, which opens new avenues given the increasing area of secondary forests and tree plantations. We used annual tree diameter measurements and stem discs from 139 16-year-old trees belonging to five native species planted in the Sardinilla tree diversity experiment in Panama and compared three methods to determine annual radial growth. Employing inventory measurements, visual stem disc analysis, and wood density measurements, series of radial growth were calculated to compare relative growth during wet and dry extreme events, and to compute continuous climate-growth correlations. Our results show that annual radial growth data derived from wood density profiles are best suited for climate-growth relationships, as they could capture a common growth signal within the high intraspecific variability of young trees to seasonal climatic variables. Annual radial growth data derived visually and from inventories are still useful for quantifying growth responses during extreme drought. The highest similarity among methods to determine annual radial growth, combined with the strongest climate-growth relationships, were found for Cedrela odorata, a species that shows a pronounced decrease in water use and cambial dormancy during the dry season. Stem discs from young trees planted in tropical forest plantations may thus offer a suitable source for dendroecological analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.