Abstract

With the development of simulation technology and the ability to obtain accurate numerical results, as well as with the development of information technology, software that can solve numerical problems has become necessary to see physical changes that cannot be seen by the human eye. Multiphase stream field is settled utilizing the volume of fluid (VOF) method, and the flow equations are assessed and addressed mathematically by the notable limited volume approach. As a multiphase framework without mass exchange, air/water stream is considered. For practically all cases considered in this review, the heat transfer coefficient is higher. In any case, a critical punishment pressure drop was observed especially for high mass courses through undulating channels. A wavy channel with a variable wave height was simulated to see the variables of the flow process for multi-phase materials with a square cross-section, where different speeds were used for the inlet duct for air, water and steam. The results proved that the increase in the height of the channel wall wave works to obstruct the flow and thus increases the time required for the fluid to reach the exit area. The value of time required for steam and air to reach the exit area at the channel wall wave height of 25 mm and the flow velocity of 0.1 m/s was 6.01 s, which is the longest time it took for the fluid to reach the exit area compared to other cases. The pressure value reflects the amount of turbulence in the flow process, and it's crucial for thermal improvements based on flow turbulence. The entrance flow velocity is 0.1 m/s and the wall wave height is 25 mm at a time of 2 s, when the pressure reaches 873.7 Pa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.