Abstract

Turbulent gas-liquid multiphase flows with and without phase change in a vertical wavy channel are addressed. The multiphase flow field is resolved using the volume of fluid method (VOF), and the flow equations are discretized and numerically solved by the well-known finite volume method. As a multiphase system without mass transfer, air/water flow is considered. It is shown that numerical simulation is well capable of predicting the various multiphase flow regimes ranging from slug to bubbly flows inside wavy channels. Moreover, accurate predictions of overall pressure drop are provided by numerical solutions for various air and water flow rates and the phase shift angle between wavy channel walls. Additionally, condensing flows of refrigerant R134a are simulated inside wavy channels. It is found that for almost all the cases considered in the present study, the convective heat transfer coefficient is higher in wavy channels in respect to straight channels. However, a significant pressure drop penalty is observed especially for high mass fluxes across wavy channels. Therefore, the use of the wavy channels for the enhancement of condensing heat transfer is only advisable for low mass fluxes with the phase shift angle of 180°.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.