Abstract

Hand-specimen and outcrop scale examples of folds are analyzed here to identify the characteristic signatures of fold-accommodation faults. We describe and analyze the geometric and kinematic relationships between folds and their associated faults in detail including the structural position and spatial distribution of faults within a fold, the displacement distribution along the faults by applying separation–distance plots for the outcrop scale examples, and the change of cut-off angle when the fault cut across folded layers. A comparison between fold-accommodation faults and fault related folds based on their separation–distribution plots and the problem of time sequence between faulting and folding are discussed in order to distinguish fold-accommodation faults from the reverse faults geometrically and kinematically similar to them. The analysis results show that fold-accommodation faults originate and terminate within a fold and usually do not modify the geometry of the fold because of their limited displacement. The out-of-syncline thrust has a diagnostically negative slope (separation value decreasing away from the upper fault tip) in the separation–distance graph. The change of cut-off angle and the spatial distribution of faults display a close relationship with the axial surface of the fold. Our analyses show that fold-accommodation faults are kinematically consistent with the flexural slip of the fold. The interbedded strata with competence contrast facilitate formation of fold-accommodation faults. These characteristic signatures are concluded as a set of primary identification criteria for fold-accommodation faults.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.