Abstract

AbstractThe open‐circuit voltage (VOC) and fill factor are key performance parameters of solar cells, and understanding the underlying mechanisms that limit these parameters in real devices is critical to their optimization. Device modeling is combined with luminescence and cell current–voltage (I–V) measurements to show that carrier transport limitations within the cell can significantly reduce the cell voltage around the maximum power point as well as, under certain conditions, at VOC. An important consequence is that the cell terminal voltage cannot be assumed a priori to be only limited by parasitic recombination. It is demonstrated that luminescence‐based measurements can be used to reconstruct cell I–V curves with removal of any transport limitation effects, which allows the contribution of recombination, shunt resistance, and series resistance on the fill factor to be clarified. Such luminescence‐based measurements allow the contactless characterization of cells and cell precursor structures, and should prove highly valuable as a diagnostic tool for the development of new cell structures and large‐area cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.