Abstract
The novel Time Series Data Mining (TSDM) framework is applied to analyzing financial time series. The TSDM framework adapts and innovates data mining concepts to analyzing time series data. In particular, it creates a set of methods that reveal hidden temporal patterns that are characteristic and predictive of time series events. This contrasts with other time series analysis techniques, which typically characterize and predict all observations. The TSDM framework and concepts are reviewed, and the applicable TSDM method is discussed. Finally, the TSDM method is applied to time series generated by a basket of financial securities. The results show that statistically significant temporal patterns that are both characteristic and predictive of events in financial time series can be identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.