Abstract

This paper proposes a novel time series data mining and analysis framework inspired by ancient Chinese culture I-Ching. The proposed method converts the time series into symbol spaces by employing the concepts and principles of I-Ching. Algorithms are addressed to explore and identify temporal patterns in the resulting symbol spaces. Using the analysis framework, major topics of time series data mining regarding time series clustering, association rules of temporal patterns, and transition of hidden Markov process can be analyzed. Dynamic patterns are derived and adopted to investigate the occurrence of special events existing in the time series. A case study is illustrated to demonstrate the effectiveness and usefulness of the proposed analysis framework. Key words: Time series, data mining, Chinese I-Ching.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.