Abstract

Systems toxicology, a branch of toxicology that studies drug effects at the level of biological systems, offers exciting opportunities to discover toxicity-related sub-networks using high-throughput technologies. This paper takes a computational approach to systems toxicology and investigates the use of automated signalling path detection for discovery of potential biomarkers of drug-induced non-immune neutropenia. The algorithm utilises a gene expression change measure to mine a large protein interaction network and identify chemical-toxicity signalling paths. Cytoscape-based analysis of detected signalling paths with statistically significant path expression scores reveals 'hub' proteins and a smaller sub-network of path proteins. The importance of 'hub' and drug-toxicity signalling path proteins in haematological and apoptotic signal transduction networks is investigated in order to understand the value of automated signalling path detection approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call