Abstract
Local patterns in the form of single clusters are of interest in various areas of data mining. However, since the intention of cluster analysis is a global partition of a data set into clusters, it is not suitable to identify single clusters in a large data set where the majority of the data can not be assigned to meaningful clusters. This paper presents a new objective function-based approach to identify a single good cluster in a data set making use of techniques known from prototype-based, noise and fuzzy clustering. The proposed method can either be applied in order to identify single clusters or to carry out a standard cluster analysis by finding clusters step by step and determining the number of clusters automatically in this way.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.