Abstract

AbstractA new strategy to in situ immobilize iron (Fe) single clusters on N‐doped porous carbon under the confinement effect of N‐coordination supplied by porphyrins is demonstrated. During the pyrolysis reaction, the strong chelated interaction between Fe and N atoms serves as the pivotal role for achieving Fe single clusters via inhibiting the superabundant aggregation of Fe atoms. Compared to the Fe‐based nanoparticles and commercial Pt‐C, the synthesized single Fe cluster catalyst (C/TP‐Fe700) owns a superior catalytic performance in alkaline medium, which is confirmed by the more positive half‐wave potential (0.865 V, 28 mV higher than Pt‐C), high mass activity (0.60 A mg−1Fe, 10 times larger than Pt‐C), the excellent durability and remarkable methanol tolerance. Additionally, it likewise presents satisfactory oxygen reduction reaction activity in acidic medium compared with Pt‐C. This single metal cluster (metal cluster with subnanometer) catalyst with trace‐metal contents displays double advantages from metal and metal‐free oxygen reduction catalysts, such as high activity, ultralight mass, and environmental friendliness. Insight into this successful paradigm can provide a novel concept for constructing and understanding oxygen reduction catalysts at an approximate atomic scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.