Abstract
Field-programmable gate arrays (FPGAs) are susceptible to radiation-induced effects that can affect more than one memory cell. Radiation-induced microsingle event functional interrupts (micro-SEFIs) are one of such events that can upset several bits at a time. These events need to be studied because they can overcome protection from techniques such as triple modular redundancy (TMR) and error correction codes (ECCs). Extracting these events from radiation data helps to understand if specific resources of the FPGA are more vulnerable and the extent of this vulnerability. This article presents a method based on statistics and fault injection to identify micro-SEFIs from beam-test data in the configuration memory and block RAM (BRAM) of SRAM-based FPGAs. The results show the cross section of these events for the configuration RAM (CRAM) and BRAM for three families of Xilinx SRAM FPGAs gathered throughout three neutron tests. This article also contains data from a fault injection campaign to uncover the possible CRAM source bits causing micro-SEFIs in memory look-up tables (LUTs) of Xilinx 7-series and Ultrascale devices.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have