Abstract
Abstract A compilation of the thicknesses of contact metamorphic aureoles (CMAs) developed around intermediate to felsic plutons shows many CMAs are far broader than expected by commonly used thermal models for pluton emplacement. Shortfalls in the amount of heat potentially provided based on pluton size, compared to that needed to form the observed CMA, can be accounted for if some hot magma has been lost by volcanic eruption after passing through the pluton domain and replaced by new hot magma. A high ambient temperature may also contribute to broad CMA formation. However, the presence of coeval pairs of both narrow and broad CMAs in the same area requires contrasting types of pluton growth history. Our thermal modeling, constrained by the peak metamorphic temperature, shows the broad CMA of a well-developed pair of CMAs in the Hongusan area of Japan is due to a magmatic history, including magma tapping and replenishment. A global compilation of CMAs suggests more than 30% of plutons are associated with broad CMAs and fed contemporaneous volcanic eruption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.