Abstract

AbstractThe non‐uniform presence of shunting defects is a significant cause of poor reproducibility across large‐area solar cells, or from batch‐to‐batch for small area cells, but the most commonly used value for shunt parameterisation (the shunt resistance) fails to identify the cause for shunting. Here, the use of equivalent circuit models to describe dark current–voltage characteristics of ZnO:Al/i‐ZnO/CdS/CIGS/Mo devices in order to understand shunting behaviour is evaluated. Simple models, with a single shunt pathway, were tested but failed to fit experimental data, whereas a more sophisticated model developed here, which includes three shunting pathways, yielded excellent agreement throughout the temperature range of 183–323 K. The temperature dependence of fitting parameters is consistent with known physical models. Activation energies and contact barriers are determined from the model, and extracted diode factors are unique across the voltage range. A case study is presented whereby the model is used to diagnose poor reproducibility for CIGS devices (efficiency ~3–14% across a 100 cm2 plate). It's shown that lower efficiencies correlated with greater prevalence of Ohmic and non‐Ohmic shunt currents, which may form due to pinholes in absorber and buffer layers respectively, whereas the quality of the main junction was constant for all cells (diode factor ~1.5–2). Electron microscopy confirmed the presence of ZnO:Al/i‐ZnO/Mo and ZnO:Al/CIGS/Mo regions, supporting the multi‐shunt pathway scheme disclosed by modelling. While the model is tested with CIGS cells here, this general model is a powerful diagnostic tool for process development for any type of thin‐film device. Copyright © 2015 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.