Abstract

Motivated by the implementation of a SARS-Cov-2 sewer surveillance system in Chile during the COVID-19 pandemic, we propose a set of mathematical and algorithmic tools that aim to identify the location of an outbreak under uncertainty in the network structure. Given an upper bound on the number of samples we can take on any given day, our framework allows us to detect an unknown infected node by adaptively sampling different network nodes on different days. Crucially, despite the uncertainty of the network, the method allows univocal detection of the infected node, albeit at an extra cost in time. This framework relies on a specific and well-chosen strategy that defines new nodes to test sequentially, with a heuristic that balances the granularity of the information obtained from the samples. We extensively tested our model in real and synthetic networks, showing that the uncertainty of the underlying graph only incurs a limited increase in the number of iterations, indicating that the methodology is applicable in practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.