Abstract
Our research team has previously used four Electroencephalography (EEG) leads to successfully detect and predict Freezing of Gait (FOG) in Parkinson's disease (PD). However, it remained to be determined whether these four sensor locations that were arbitrarily chosen based on their role in motor control are indeed the most optimal for FOG detection. The aim of this study was therefore to determine the most optimal location and combination of sensors to detect FOG amongst a 32-channel EEG montage using our EEG classification system. EEG measures, including power spectral density, centroid frequency and power spectral entropy, were extracted from 7 patients with PD and FOG during a series of Timed up and Go tasks. By applying a feed-forward neural networks to classify EEG data, the obtained results showed that even a small number of electrodes suffice to construct a FOG detector with expected performance, which is comparable to the use of a full 32 channels montage. This finding therefore progresses the realization of a FOG detection system that can be effectively implemented on a daily basis for FOG prevention, improving the quality of life for many patients with PD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.