Abstract

Accident investigation reports provide useful knowledge to support companies to propose preventive and mitigative measures. However, the information presented in accident report databases is normally large, complex, filled with errors and has missing and/or redundant data. In this article, we propose text mining and natural language processing techniques to investigate low-quality accident reports. We adopted machine learning (ML) to detect and investigate inconsistencies on accident reports. The methodology was applied to 626 documents collected from an actual hydroelectric power company. The initial ML performances indicated data divergences and concerns related to the report structure. Then, the accident database was restructured to a more proper form confirming the supposition about the quality of the reports investigated. The proposed approach can be used as a diagnostic tool to improve the design of accident investigation reports to provide a more useful source of knowledge to support decisions in the safety context.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.