Abstract
In the past decades, marine accidents brought the serious loss of life and property and environmental contamination. With the accumulation of marine accident data, especially accident investigation reports, compared with subjective reasoning based on expert experience, data-driven methods for analysis and accident prevention are more comprehensive and objective. This paper aims to develop a content-aware corpus-based model for the analysis of marine accidents to mine the accident semantic features. The general research framework is established to combine accident data, expert prior knowledge, and semi-automated natural language processing (NLP) technology. The NLP models are optimized, fused, and applied to the case study of ship collision accidents. The results show that the proposed model can accurately and quickly extract hazards, accident causes, and scenarios from the accident reports, and perform semantic analysis for the latent relationships between them to extend the accident causation theory. This study can provide a powerful and innovative analysis tool for marine accidents for maritime traffic safety management departments and relevant research institutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.