Abstract
<p>Liver cancer has a high mortality rate, especially in South Asia, East Asia, and Sub-Saharan Africa. Efforts to reduce these rates focus on detecting liver cancer at all stages. Early detection allows more treatment options, though symptoms may not always be apparent. The staging process evaluates tumor size, location, lymph node involvement, and spread to other organs. Our research used the CLD staging system, assessing tumor size (C), lymph nodes (L), and distant invasion (D). We applied a deep learning approach with a cascaded convolutional neural network (CNN) and gray level co-occurrence matrix (GLCM)-based texture features to distinguish benign from malignant tumors. The method validated with the cancer imaging archive (TCIA) dataset, demonstrating superior accuracy compared to existing techniques.</p>
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IAES International Journal of Artificial Intelligence (IJ-AI)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.