Abstract

Lightning is a fascinating yet insufficiently understood phenomenon. Very high frequency (VHF, 30–300 MHz) observations of lightning yield an ever-growing amount of data. In particular, LOFAR (LOw Frequency ARray) can reach meter and nanosecond precision with up to a million radio source locations per second. This lightning data is extremely complex, as a single lightning flash can contain hundreds of lightning channels and a myriad of different phenomena. However, so far this process has been mostly analyzed by-eye, which is very time-consuming. Thus, this increase in complexity of VHF lightning data calls for the application of machine learning algorithms. To identify structures from numerous spatio-temporal points in a high dimensional space, we designed an analysis pipeline combining a t-distributed stochastic neighbor embedding (t-SNE) algorithm and a clustering algorithm. We show that this combination allows for distinguishing correlated structures in an unsupervised approach. This novel method is a powerful tool to search vast multidimensional data sets for unique structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call